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The method of pseudocompressibility has been found to be an efficient method for 
obtaining a steady-state solution to the incompressible Navier-Stokes equations. Recent 
improvements to this method include the use of a diagonal scheme for the inversion of the 
equations equations at each iteration. The necessary transformations have been derived for the 
pseudocompressibility equations in generalized coordinates. The diagonal algorithm reduces 
the computing time necessary to obtain a steady-state solution by a factor of nearly three. 
Implicit viscous terms are maintained in the equations, and it has become possible to use 
fourth-order implicit dissipation. The steady-state solution is unchanged by the approxi- 
mations resulting from the diagonalization of the equations. Computed results for flow over a 
two-dimensional backward-facing step and a three-dimensional cylinder mounted normal to a 
flat plate are presented for both the old and new algorithms. The computing efficiency of these 
algorithms are compared. Identical solutions are obtained from both algorithms which com- 
pare well with experimental results. ‘c 1987 .4cadsmic Press, Inc. 

One of the best methods for obtaining a steady-state solution to the incom- 
pressible Navier-Stokes equations is the method of pseudocompressibility. It has 
been used with much success in solving complex incompressible flow problems in 
generalized coordinates [ 1, 21, and has been used as a particularly useful tool in 
studying high temperature gas flow through components of the space shuttle main 
engine [3, 41. In this formulation, a time derivative of pressure is added to the con- 
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tinuity equation. Together with the momentum equations, this forms a hyperbolic 
system of equations which can be solved with an implicit approximate factorization 
algorithm, such as the one given by Beam and Warming [S] or Briley and 
McDonald [6]. This system can be solved more efticiently than the original elliptic 
equations, which would require that a divergence-free velocity field be obtained at 
each time step. The time derivative of pressure will relax the requirement for a 
divergent free solution by creating artificial pressure waves of finite speed. When the 
solution converges to a steady state, a divergent free solution is obtained. 

Recent improvements to this method include the use of a similarity transform 
which diagonalizes the Jacobian matrices and uncouples the set of equations. The 
equations can then be solved by solving scalar tridiagonal matrices instead of 
solving block tridiagonal matrices. A similarity transform which symmetrizes and 
diagonalizes the matrices of the compressible gas dynamic equations has been used 
by Warming et al. [7] and Turkel [S]. This method was used by Pulliam and 
Chaussee [9] to produce a diagonal algorithm for the Euler equations. In the 
current work, similarity transforms for the matrices used in the method of 
pseudocompressibility have been derived and are presented herein. They are used in 
a diagonal algorithm which results in a substantial reduction in computer time. 

DIAGONAL SCHEME 

Using the method of pseudocompressibility, a time derivative of pressure is added 
to the continuity equation as first proposed by Chorin [IO] and used by Steger and 
Kutler [ 111, resulting in 

where /I is the pseudocompressibility constant. This equation, together with the 
equations of momentum, forms a hyperbolic system of equations, whose steady- 
state solution is a solution to the incompressible NavierStokes equations. A 
generalized curvilinear coordinate system is introduced 

and the equations can be written 
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where 

BU+4r(P-B) 

j?=’ uu+ LP 
J i I vu + r, P 

wu+ [,p 

(3) 

. 

Here, p is the pseudocompressibility constant, J is the Jacobian of the transfor- 
mation, the metrics are given by 

and U, V, and W are the contravariant velocities 

u=5,+~.,u+5,v+<z~v 

v= lfr + tj,u+ ‘Iyv + qz)i’ 

w= (, + i,u + iyv + izlY, 

(4) 

where U, 0, and w are the velocity components in Cartesian coordinates. It is 
assumed that a nearly orthogonal grid is being used so that the viscous fluxes are 
given by 

(5) 
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where v is the kinematic viscosity, V is the de1 operator, and 

These equations can be solved using an implicit approximately factored 
algorithm such as the method of Beam and Warming [S]. This results in the 
difference equation in generalized coordinates, 

&cqq(D”+ l- 0”) = RHS, 

where D” is the value of D at time T = II AT, and RHS is given by 

!6 1 

RHS= -ATJ”+~ [S,(E- &)” + 6,,(E-F,)” + S,(C - 6,)“] [T‘ I ’ ) 
-c,[(V< A,)‘+ (V,! d,,)‘+V; A;)‘] D” 

and the implicit operators are given by 

Here, Vc, A:, and 6< are the backward-difference, forward-difference, and central- 
difference operators, respectively, in the [-direction. The symbol At is the time 
increment, J is the Jacobian of the transformation, E, and Ei are the explicit and 
implicit dissipation coefftcients, respectively, and I is the 4 x 4 identity matrix. The 
viscous terms are given by 

r,=yvi~v;Im 6,, 

where V< is the gradient of 5 and I, is a modified identity matrix where the first 
diagonal element is zero. The Jacobian matrices ai are given by 
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Lo LID L2P L3P 
& L, Llu+Q Lzu L3U 

L2 L,v L,o+Q L,tl ’ 

L3 L 1 IV L, IV L3 w + Q 1 

where Q is the contravariant velocity and Lj represent metric quantities: 

Q=L,+L,u+L,v+L,w 

LCl=(ti)r9 Ll=(ti)x3 L2=(5i)~3 L3=(5i)z 

ti= 5, ‘1, or 5 for i = 1, 2, 3, respectively, 

(5,L = xi,& etc 

(10) 

Solving Eq. (6) requires the inversion of a 4 x 4 block tridiagonal matrix since the 
equations are coupled. Similarity transformations exist which diagonalize the 
Jacobian matrices 

Ai= T,/iJT’ (11) 

where /ii is a diagonal matrix whose elements are the eigenvalues of the Jacobian 
matrices which is given by 

k= [i i Q;c ,g (12) 

and where C is the pseudospeed of sound, which is given by 

C= [(Q-L,)‘+~(L~+L~+L~)]“’ 

The r, matrix is composed of the eigenvectors of the Jacobian matrix. 
The difficulty in obtaining such a matrix lies in finding the first two eigenvectors, 

X, and X2, associated with the repeated eigenvalue. Using the repeated eigenvalue, 
Q, the form of the first eigenvectors can be derived: 

Lo-Q L,P LA L,b’ xo 
L,u Lzu L,u X1 HI =c‘ 
L.,v L,o L,v x2 

LIW L,tv L,w x3 

This can be simplified to 

1 Ll L2 0 Ll 0 0 L2 0 0 -53 0 0 x x0 1 

I 

= 0. 
x2 

L, 0 0 0 x3 
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Thus the form of the first two eigenvectors is given by 

where 

and the zi represent normalized metric quantities 

(i3a) 

Since the first of the four elements of these eigenvestors must be zero, and the three 
remaining elements are completely dependent on the metric values, many of the 
possible pairs of vectors satisfying the requirements given in Eq. (13) may become 
linearly dependent for some values of the metrics. This causes the eigenvector 
matrix to become singular and the transformation breaks down. 

To construct suitable eigenvectors, X, and X2, the following derivation was 
pointed out by T. J. Barth [12]. Define a unit vector whose components are equai 
to the normalized metric quantities, 

The requirement in Eq. (13b) states that the three components needed for each of 
the first two eigenvectors form a vector which is orthogonal to the L vector. 

x.L=O 

y.L=O. 
(16) 

where 

The necessary eigenvectors can be constructed with reciprocal basis vectors. 
Figure 1 shows a two-dimensional schematic of the problem. The family of curves 
shown are 5 and ye. The L vector in this case is 
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FIG. 1. Relation between x and L vectors and the grid lines. 

and the desired x vector will be tangent to the 5 - r - constant curve at the point CI. Let 
R be the space vector to the point a, then a vector satisfying Eq. (11) is given by 

8R x,, 

x = aYI = I’q I 1 . 

In three dimensions, where L =Vti, x and y are given by 

(17) 

where the ci are given by cyclic permutation, Thus, for i= 1 (t-sweep), the first two 
eigenvectors are given by 

For i= 2 (g-sweep) they are 

(18) 

(19) 
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For i= 3 (C-sweepj they are 

(30) 

The terms in these eigenvectors have been normalized to simplify the inverse matrix 
with 

T’ne eigenv-ectors associated with the last two eigenvalues are given by 

where 

Tghe columns of the Tj matrix are formed with the eigenvectors 

Ti = [Xl x2 x j X,]. 

The elements of the inverse of Tj are given by 
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The determinant of Ti is given by 

det( Tj) = 2c3 

(22) 

which remains bounded independent of the geometry. 
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IMPLEMENTATION OF THE SCHEME 

If sufficient memory is available, the &~~/a<~ terms can be computed once and 
stored in core. However, as this would require nine storage locations per grid point, 
this is not usually possible. If the grid coordinates are always kept in core, the mosr 
efficient method of computing these terms is to use a central-difference 
approximation each time they are needed. This is the method used in the current 
implementation. There may be some cases in which the grid is not available in 
memory, but the metrics are stored. In this case, the &c,!(?<~ terms could be 
obtained from 

(23) 

This requires that all nine terms of the metrics are known all the time, and this 
requires more operations than computing the terms directly from the grid values. 

The implementation of the scheme involves replacing the Jacobian matrices in 
the implicit operators with the product of the similarity transform matrices and the 
diagonal matrix as given in Eq. (11). The identity matrix in the implicit operators is 
replaced by the product of the similarity transform matrix and its inverse. A 
modification is made to the implicit viscous terms by replacing the I, matrix with 
an identity matrix so that the transformation matrices may also be factored out of 
these terms. This adds an additional viscous dissipation term to the pressure 
implicitly. The transformation matrices are now factored out of the implicit 
operators to give 
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where the implicit viscous terms are now given by 

Since the transformation matrices are dependent on the metric quantities, factor- 
ing them outside the difference operators introduces an error. No modification has 
been made to the right-hand side of the equation and therefore these linearization 
errors will not affect the steady-state solution, only the convergence path toward 
the solution. 

The implementation of this algorithm will result in a substantial reduction in 
computational time per iteration because of the decrease in the number of 
operations performed. Additionally, considerably less memory is required to store 
the elements on the left-hand side. This additional memory was used to further vec- 
torize the existing code as follows. Since the solution of a tridiagonal block or scaler 
matrix is recursive, it is not vectorizable for loops which use the current sweep 
direction as the inner do-loop index. However, if a large number of these matrices 
are passed into the inversion routines at once, then vectorization can take place in 
the “non-sweep” direction. This requires the additional memory to store all of the 
matrices at once. If the amount of memory available is limited, this is only feasible 
when solving tridiagonal or pentadiagonal scaler matrices. However, since new 
supercomputers are becoming available whose addressable core memory is orders 
of magnitude greater than most current computers, this added benefit of the 
diagonal algorithm may not be significant in the future. 

COMPUTED RESULTS 

The new algorithm was tested by computing the flow over a two-dimensional, 
backward-facing step with a two-to-one expansion ratio, and also the flow over a 
three-dimensional cylinder placed normal to a flat plate. The backward-facing step 
used a 6.5 x 33 H-grid and was run at a Reynolds number of 100 based on twice the 
step height. The cylinder used a 35 x 47 x 29 O-grid and was run at a Reynolds 
number of 100 based on the cylinder diameter. These cases were run to compare the 
convergence histories and the computing times of the block tridiagonal solver and 
the diagonal solver. The diagonal algorithm was run using both second- and fourth- 
order implicit dissipation. The value of the time step was 0.1 for the two- 
dimensional problem and the three-dimensional problem with a time step of 0.05. 
The artificial dissipation coefficients were 0.1 for E, and 0.3 for E, for all cases. The 
pseudocompressibility constant /? was 5.0 for all cases. 

The computing times for various cases are given in Table I. The entries are com- 
puting time per grid point per iteration. The computation was carried out on a 
Cray XMP-48. The first entries are the computing time of the block algorithm for 
both the backward-facing step and the cylinder problems. There are three different 
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TABLE I 

CPU Time per Grid Point per Iteration 

Computing time, ps 

Block 
Diagonal 
Diagonal with added 

vectorization 
Diagonal with fourth-order 

implicit dissipation 

Backstep Cylinder 

58.8 90.6 
31.9 39.9 

21.9 31.5 

29.0 32.9 

entries for the diagonal algorithm. The first diagonal entries are times which use the 
same amount of vectorization as the block algorithm. This shows a 46% reduction 
in the computing time for the backward-facing step problem and a 56% reduction 
in the computing time for the cylinder problem. The next diagonal entries give the 
computing times when the additional vectorization is used. Virtually all the inver- 
sion subroutines are fully vectorized. This gives a 53 % reduction in computing time 
for the backward-facing step and a 65 o;O reduction in computing time for the cylin- 
der. The last diagonal case is the computing time when fourth-order implicit dis- 
sipation is used. It can be seen that the use of fourth-order implicit dissipation does 
not increase the computing time significantly. 

The convergence history of the backward-facing step is given in Fig. 2. In Fig. 2a, 
the log of the rms of the change in the flow variables at each time step is plotted 
versus iteration number. All the methods converge to almost 10-j before the curves 
flatten out. It is seen that the block algorithm and the diagonal algorithm using 
second-order implicit dissipation have similar convergence histories. The diagonal 
algorithm with fourth-order implicit dissipation converges slightly faster than either 

-BLOCK 
c DIAGONAL 2nd 
': __- DIAGONAL&h 

$ 
g? 
d': 
?5 
i: 

0 
7 

; 
0 *50 500 750 

ITERATION NUMBER 

---BLOCK 
DIAGONAL 2nd 

__ -DI.AGONAL 4th 

FIG. 2. Convergence history for the backward facing step comparing the block algorithm. the 
diagonal algorithm with second-order implicit dissipation, and the diagonal algorithm with fourth-order 
implicit dissipation: (.a j convergence versus iteration number; (b i convergence versus computing tine in 
CPU seconds. 

%:;73:2.!0 
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of the other two. In Fig. 2b, the log of the rms of the change of the flow variables is 
plotted versus computing time. This shows that the diagonal algorithm requires less 
than half the computing time than that required for the block algorithm. Although 
the fourth-order dissipation approach is more expensive per iteration, it reduces the 
computing time necessary to obtain a steady-state solution. 

The convergence history for the three-dimensional cylinder is shown in Fig. 3. In 
Fig. 3a, the log of the rms of the change in the flow varibles is plotted versus 
iteration number. The convergence is almost identical for both algorithms, and very 
little difference is observed when fourth-order implicit smoothing is used. In Fig. 3b, 
the convergence versus computing time is shown for the cylinder computations. The 
computing time for a converged solution with the diagonal algorithm is about 
one-third of that with the block tridiagonal algorithm. Again it is seen that the 
fourth-order implicit smoothing does not make a significant difference in the 
calculation. 

The three-dimensional cylinder calculations were carried out at a Reynolds 
number of 100. Both algorithms converged nearly identically when second-order 
dissipation was used. When the fourth-order implicit dissipation was used for this 
case, however, the solution became unsteady in the wake and periodic vortex 
shedding was observed. This indicates that the second-order implicit dissipation 
suppresses any periodic flow at this Reynolds number, whereas the fourth-order 
dissipation does not. Using the method of pseudocompressibility, the continuity 
equation is satisfied only in the steady state. Hence, any unsteady flow cannot be 
computed accurately with this method. Thus for flows which may become unsteady, 
fourth-order dissipation may not be used when a steady-state solution is desired. 

To determine the accuracy of the diagonal algorithm calculations, the solutions 
of the diagonal algorithm were compared to experimental results of laminar two- 
dimensional flow over a backward-facing step with a two-to-one expansion ratio. In 
the computations, the inflow was prescribed to be a parabola at the step. The 

-BLOCK 
DIAGONALZnd 

-- DIAGONAL4th 

2.50 500 7.50 
ITERATION NUMBER 

-BLOCK 
DIAGONALZnd 

--DIAGONAL 4th 

COMPUTING TIME 

FIG. 3. Convergence history for the three-dimensional cylinder at Re = 100, comparing the block 
algorithm, the diagonal algorithm with second-order implicit dissipation. and the diagonal algorithm 
with fourth-order implicit dissipation: (a) convergence versus iteration number; (b) convergence versus 
computing time in CPU seconds. 
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-DIAGONAL ALGORITHM 
+ BLOCK ALGORITHM 
'3 EXPERIMENT [13] 

FIG. 4. Separation bubble length versus Reynolds number for a backward-facing step. 

Reynolds number was based on the average inflow velocity and twice the step 
height. The length of the separation bubble behind the step was computed for 
Reynolds numbers ranging from 100 to 800. The experimental results were reported 
by Armaly rt al. [13], and has been used previously to test the accuracy of the 
pseudocompressibility method using the block algorithm [ 141. As expected, the 
results of the diagonal algorithm were the same as found using the block algorithm. 
Hn Fig. 4, the computed reattachment length is plotted versus Reynolds number 
along with the results from the experiment. The reattachment length is given in step 
heights. Good comparison with the experimental results is seen, particularly for ihe 
lower Reynolds numbers. At Reynolds numbers higher than 500, the experimental 
paper reported some three-dimensional flow effects. which could explain the dis- 
crepancy between the two-dimensional calculations and the experiment for rhis 
range. In Fig. 5, the velocity profiles at various streamwise locations are shown for 

FE. 5. Velocity profiles for a backward facing step at Re = 100: 3 = diagonal algorithm, - = block 
algorithm. 
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the backward-facing step at a Reynolds of 100. The lines indicate the block 
solution, and the circles indicate the diagonal solution. The solutions are found to 
be the same for both algorithms. 

SUMMARY AND CONCLUSION 

When using a standard implicit, finite-difference algorithm to solve fluid dynamic 
equations, the inversion of an implicit operator involves the solution of a block 
tridiagonal matrix. With the use of a similarity transform, the blocks may be 
diagonalized, and the inversion requires the solution of only a scalar tridiagonal 
matrix. Such a transform for the equations of the method of pseudocompressibility 
has been presented. Its use has resulted in the reduction of computing time 
necessary to obtain a steady-state solution to the incompressible Navier-Stokes 
equations by a factor of nearly three over the standard block algorithm. Some of 
this savings is a result of the additional vectorization made possible by the decrease 
in the memory requirements of the new algorithm. The diagonal algorithm also 
makes possible the use of fourth-order implicit smoothing with very little increase 
in computing time. The use of fourth-order implicit smoothing, however, increases 
the convergence rate by only a very small amount. The convergence rates for the 
diagonal and standard algorithms are nearly the same. The solutions to both the 
diagonal and the block algorithms compare well to experimental measurements of a 
flow over a backward-facing step. 
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